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Figure 1. Overview of DREAMoR. Given a partially occluded or noisy motion sequence, we first encode motion using a MotionVAE to
obtain a latent transition sequence z0t . Each latent transition is then used in two parallel branches: (1) applies noise to latent motion and a
latent diffusion denoising to produce a distribution-aligned latent ẑ0t ; (2) the current latent is decoded into a predicted motion frame using
a transition generator. Both outputs contribute to our energy function, which includes SDS loss, observation loss, and regularization. By
minimizing this energy through optimization, we refine zt and decode the optimized latents into the final high-quality motion sequence.

Abstract

Monocular human motion capture systems often suffer from
noisy or incomplete predictions due to occlusions, poor vis-
ibility, or ambiguous poses. To address these limitations, we
propose DREAMoR: a diffusion-based motion prior frame-
work for reconstructing physically plausible human motion
from corrupted sequences. Our method first learns a latent
space of motion transitions using a MotionVAE trained on
clean data. We then train a diffusion model in this latent
space to capture the distribution of realistic motion transi-
tions, conditioned on previous frames. At inference time,
we use multistep DDIM-style denoising and score distilla-
tion to optimize the latent sequence, ensuring that the re-
sulting motion both aligns with the noisy input and adheres
to the learned motion prior. Experiments on AMASS show
that DREAMoR outperforms prior methods in recovering
occluded joints and produces smoother, more realistic mo-
tion. Our ablation studies further highlight the effectiveness
of latent diffusion priors for motion refinement.

1. Introduction

Markerless human motion capture has made significant
progress in recent years. Modern methods[2, 6, 13, 14, 17,
25] can even estimate full 3D human mesh and joint trajec-
tories from monocular RGB videos or images. Yet, these
monocular reconstruction pipelines remain fragile in prac-
tice. When parts of the body are occluded or poorly es-
timated, the resulting 3D motion can exhibit severe noise,
jitter, or even physically implausible behaviors.

To overcome these limitations, many works [31, 32] have
explored the use of human motion priors to regularize or re-
fine motion predictions. These priors aim to capture how
humans typically move, using models ranging from Gaus-
sian processes [38] to VAEs [18, 47] and transformers. They
are often used to repair corrupted sequences or fill in miss-
ing joints.

At the same time, diffusion models have demonstrated re-
markable success in modeling complex, high-dimensional
distributions. Recent motion generation works [7, 32, 33,
43, 43, 46] have shown that diffusion models can produce
highly realistic and diverse human motions from text, audio,
or sparse inputs. Inspired by these advances, we investigate
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whether diffusion can also serve as a motion prior for refin-
ing noisy motion observations—particularly those affected
by occlusion or sensor noise.

In this work, we propose DREAMoR, a framework that
reconstructs clean and physically plausible human motion
from occluded sequences using a diffusion-based prior. Our
key insight is to learn a latent space of motion transitions,
capturing how motion evolves over time, and train a con-
ditional latent diffusion model directly in that latent space.
At test time, we encode the corrupted motion into this latent
space, add noise and apply denoising, and then optimize the
latent motions via score distillation sampling (SDS), obser-
vation matching losses, and motion regularization. We fur-
ther demonstrate that applying multi-step DDIM [35] de-
noising during SDS yields better results than single-step es-
timation, improving realism and convergence.

We evaluate DREAMoR on a subset of the AMASS
dataset [23] with simulated occlusion. Our method outper-
forms strong baselines in reconstructing missing joint posi-
tions, and our ablation studies confirm that the learned dif-
fusion prior significantly improves both realism and consis-
tency.

Our main contributions are:
• We introduce DREAMoR, a novel motion reconstruction

framework that combines latent-space diffusion with mo-
tion prior optimization.

• We incorporate multi-step DDIM denoising into the
SDS optimization, which leads to more stable and accu-
rate reconstructions compared to single-step prediction.

• Our experiments demonstrate that DREAMoR produces
more accurate and realistic motion reconstructions than
prior methods, especially in the presence of occlusion.

2. Related Work
2.1. Motion Priors
Human motion models aim to learn the distribution of plau-
sible human movements and have long been applied to tasks
such as tracking, prediction, and synthesis. Prior work
including mixtures-of-Gaussians [11], Gaussian processes
[38], pose embeddings [26, 27, 36, 39], VAEs [18, 47],
2D convolutional models [15], and normalizing flows [8].
While these approaches capture motion statistics in seen
datasets, they often fail to generalize to out-of-distribution
behaviors. Physics-based methods [4, 5, 12, 21, 22, 30, 34,
41, 44] improve realism by enforcing physical laws via sim-
ulation.

HuMoR [31] proposed a powerful alternative: instead of
generating an entire motion sequence from scratch, it rolls
out motion transitions step-by-step, optimizing intermedi-
ate representations using motion priors. This rollout-style
paradigm helps maintain consistency across time and allows

fine-grained control guided by partial or noisy observations.

2.2. Diffusion Models for Motion
Diffusion models have recently shown strong performance
in human motion generation, where the goal is to produce
natural sequences from high-level conditions such as text,
audio, or sparse pose inputs. These models are trained to
reverse a gradual noising process, and are known to capture
expressive, high-dimensional data distributions. Notable
examples include MDM [32], MotionCLIP [37], and Uni-
MuMo [42], which generate compelling long-term motion
from text or music. Given the powerful ability of diffusion
models to capture the distributions of human motion, nu-
merous studies have extended their applications to enhance
generation efficiency and improve performance in specific
tasks, such as generation of human poses guided by text
and motion [33, 45, 48] and human motion reconstruction
[7, 43, 46].

RoHM [46] uses a diffusion model to reconstruct human
motion from noisy and occluded input. Instead of test-time
optimization, it learns directly from synthetic noisy data,
enabling faster inference. In addition, recent work[1, 3]
demonstrated that processing motion data in a compact la-
tent space allows diffusion models to generate more realistic
and coherent motion with improved efficiency.

2.3. Score Distillation Sampling
A recent trend in generative modeling involves using diffu-
sion models not just for generation, but as powerful priors
to guide reconstruction in under-constrained or corrupted
settings. This includes tasks like 3D shape completion
[28, 40], scene reconstruction from sparse views [19], and
consistency across generated images [16]. The central idea
behind these methods is Score Distillation Sampling (SDS),
where a pretrained diffusion model provides gradient-based
feedback to steer inputs toward more realistic outputs.

In motion reconstruction, this is especially relevant: real-
world capture setups, especially monocular and markerless
systems, often suffer from occlusion, missing joints, or jit-
ter. By training diffusion models on clean, high-quality
datasets, we gain access to a rich prior that reflects how hu-
mans truly move. This prior can then be used to guide the
refinement of corrupted sequences, even when the observa-
tion is limited or noisy.

3. Method
We propose DREAMoR, a framework that learns a gener-
ative prior over human motion transitions and leverages it
to refine occluded or incomplete motion sequences. The
pipeline consists of three key stages: 1) A Motion VAE
that learns a latent space zt capturing the transition between
consecutive motion frames (xt−1, xt). 2) A latent diffusion
model trained on the {zt} space to model the distribution
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Figure 2. The pipeline of DREAMoR. Each motion pair
(xt−1, xt) is encoded into a latent transition zt via the Mo-
tionVAE. The diffusion model operating in latent space uses a
transformer-based denoiser, which takes as input the noisy latent
zt

′
t , a set of tokenized conditioning vectors from xt−1, and a time

embedding for step t′. The input sequence is processed with self-
attention, and the first token (representing zt) is used to predict the
noise ϵ̂t. At test time, we apply multi-step DDIM denoising from
a random timestep t′ to t = 0, obtaining prior-aligned latents ẑ0t .
These are combined with generator outputs and observation con-
straints in an energy-based optimization over the entire latent se-
quence.

p(zt | xt−1), providing strong priors for motion refinement
at test time. 3) Optimization over the sequence of latent mo-
tions to make the motion decoded from those latent motions
more accurate and realistic.

Given an initial corrupted sequence with L frames, we
encode it into the latent space, then optimize the full set
of latent motions {z0:L}, finally decode them to roll out a
natural and better motion sequence guided by this prior.

3.1. Problem Setup
We represent each frame of human motion using SMPL pa-
rameters and derived quantities. Specifically, the motion at
t frame xt is composed of:

xt = [rt, ṙt,Φt, Φ̇t,Θt, Jt, J̇t]

Where rt ∈ R3 is root translation, Φt ∈ R9 is root ori-
entation, Θt ∈ R21×9 is body joint rotation, Jt ∈ R66 are
3D joints positions, and ṙt, Φ̇t, J̇t are velocities of the cor-
responding parameters.

We use rotation matrices to represent joint rotations and
root orientation. Compared to axis-angle or quaternion for-
mats, rotation matrices allow composition via matrix multi-
plication, which is especially useful when modeling transi-
tion dynamics across frames.

In addition to the kinematic variables, we also include a
contact vector ct ∈ [0, 1]9 that denotes the probability of
whether specific body parts (hips, legs, feet, hands, toes)
are in contact with the ground. This vector is used during

optimization to enforce physical plausibility. The contact
vector will be part of the output, and it will not be presented
in the input data.

3.2. Motion VAE
We begin by pre-training a variational autoencoder to model
the dynamics of human motion transitions. Given a motion
pair (xt−1, xt), the encoder network outputs the parameters
of a Gaussian distribution:

zt ∼ qϕ(zt | xt, xt−1) = N (µϕ(xt, xt−1), σϕ(xt, xt−1))

To simplify, we denote this procedure as:

zt = Eϕ(xt, xt−1)

A latent sample zt is then combined with the previous frame
xt−1 in the decoder to reconstruct the current motion frame:

x̂t = xt−1 +Gθ(zt, xt−1)

Here, Gθ is a learned residual function that predicts the
delta motion in state space, which improves stability and
prediction accuracy over direct generation.

The training objective optimizes a variational lower
bound augmented with physically motivated regularizers:

L = λrec · Lrec + λKL · LKL + λreg · Lreg

Reconstruction loss: We measure the deviation between
the predicted and ground-truth motion states using an ℓ2
norm:

Lrec = ∥xt − x̂t∥22

KL divergence: The KL loss regularizes the approximate
posterior towards the standard normal distribution:

LKL = DKL(qϕ(zt|xt, xt−1)∥N (0, I))

Physical regularizers: To ensure plausibility and consis-
tency with the SMPL model, we use predicted parameters to
run SMPL inference [Ĵt

SMPL
, V̂t] = MSMPL(r̂t, Φ̂t, Θ̂t, β),

where MSMPL is SMPL model [20]. Then, we introduce the
following additional losses: A joint position loss Ljoint =

∥JSMPL
t − ĴSMPL

t ∥22 enforces consistency between predicted
and reconstructed SMPL joints, while a mesh vertex loss
Lvtx = ∥Vt − V̂t∥22 supervises surface-level precision. To
align different prediction branches, we introduce a joint
consistency loss Lconsist = ∥Ĵt − ĴSMPL

t ∥22 between di-
rectly regressed joints and SMPL-inferred ones. Finally, a
contact-aware velocity penalty Lvel =

∑
j ĉ

j
t · ∥v̂

j
t ∥22 sup-

presses foot sliding by discouraging high velocities at pre-
dicted contact joints.

These terms are collectively grouped into:

Lreg = Ljoint + Lvtx + Lconsist + Lvel
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3.3. Latent Diffusion Prior
Once we have trained the Motion VAE and obtained a com-
pact latent space for motion transitions, we train a diffusion
model directly in this space. The goal is to model the dis-
tribution of plausible latent transitions zt, conditioned on
the previous motion frame xt−1. This provides a power-
ful generative prior that can later guide reconstruction via
optimization.

Given a latent transition z0t = zt = Eϕ(xt, xt−1), we
simulate a forward noising process by sampling a timestep
t′ ∼ U [1, T ], and applying:

zt
′

t =
√
ᾱt′ · z0t +

√
1− ᾱt′ · ϵ, ϵ ∼ N (0, I)

where ᾱt′ denotes the cumulative product of the noise
schedule [10]. The diffusion model Dθ is trained to predict
the noise ϵ̂ given the noisy latent and conditioning frame:

ϵ̂ = Dθ(z
t′

t | xt−1, t
′)

Then, we train this diffusion model with a simple loss:

Ldiff = ∥ϵ− ϵ̂∥22

Transformer-Based Denoising Architecture Following
BUDDI [24], we implement Dθ as a transformer encoder
that operates on a sequence of tokens. The input consists
of: A latent token representing the noisy latent ztt′ ; A set
of conditioning tokens derived from xt−1.

We tokenize xt−1 = [r, ṙ,Φ, Φ̇,Θ, J, J̇ ] using separate
MLP-based tokenizers. Each tokenizer projects its input
to a unified token dimension dtoken: τr = Tr([r, ṙ]), τΦ =
TΦ([Φ, Φ̇]) ∈ Rdtoken , etc. The conditioning sequence is con-
structed as:

τ(xt−1) = [τr, τΦ, τΘ, τJ , τJ̇ , . . . ]

The latent vector is also projected into the same token
dimension: τz = Tlatent(z

t
t′). We prepend τz to the condi-

tioning tokens to form the transformer input: [τz, τ(xt−1)]
To encode the diffusion timestep t′, we add a learned

time embedding γ(t′) to each token prior to attention.

Classifier-Free Guidance for Conditional Denoising To
improve the model’s controllability and avoid over-reliance
on conditioning inputs, we adopt Classifier-Free Guidance
(CFG) during both training and inference time [9].

During training, we randomly drop the conditioning to-
kens with a fixed probability pdrop. Specifically, for each
training sample, with probability pdrop, we replace the con-
ditioning sequence τ(xt−1) with a learned null token τnull

At inference time, we evaluate the model twice:

ϵ̂cond = Dθ(z
t
t′ | xt−1, t

′) (1)

ϵ̂null = Dθ(z
t
t′ | τnull, t

′) (2)

The final guided prediction is computed by linear inter-
polation:

ϵ̂ = ϵ̂CFG = ϵ̂null + ω · (ϵ̂cond − ϵ̂null) (3)

where ω is the guidance scale, controlling the strength
of conditional adherence.

Prediction and DDIM Denoising After processing
through the transformer, we extract the output correspond-
ing to the latent token and map it back to the latent space, as
the predicted noise ϵ̂. During inference or optimization, we
perform DDIM-style [10] inversion to obtain the denoised
latent:

ẑ0t =
1√
ᾱt′

(
zt

′

t −
√
1− ᾱt′ · ϵ̂

)
This yields a clean latent ẑ0t that reflects the model’s best

estimate of a plausible transition given context.

3.4. Run-Time Optimization
At test time, our goal is to reconstruct a clean and physi-
cally plausible motion sequence from a noisy or incomplete
observation x0:L, such as a motion capture sequence with
occlusions or jitter.

Latent Rollout and Prior Estimation Given the cor-
rupted sequence x0:L, we first use the pretrained encoder
E to obtain latent motions z0:L: zt = E(xt−1, xt).

To align each zt with the diffusion prior, we perform
K-step DDIM-style denoising. For each latent zt in the
sequence, we randomly sample a diffusion timestep t′ ∈
[1, T ] as the starting noise level. We then construct a denois-
ing trajectory of K decreasing timesteps: tK = t′, t0 = 0,
where {tk}Kk=0 is a predefined sampling schedule. We first
perturb the clean latent zt to the noisy version at step t′, de-
noted zt

′

t , as: zt
′

t =
√
ᾱt′ · zt +

√
1− ᾱt′ · ϵ. Then, for

each step k = K, . . . , 1, we apply DDIM denoising using
the predicted noise ϵ̂tk via classifier-free guidance (CFG).
Letting ᾱtk denote the cumulative noise schedule, we esti-
mate:

ẑ0t =
1

√
ᾱtk

(
ztkt −

√
1− ᾱtk · ϵ̂tk

)
,

z
tk−1

t =
√
ᾱtk−1

· ẑ0t +
√
1− ᾱtk−1

· ϵ̂tk .

The final denoised latent after K steps is denoted as ẑ0t ,
which serves as the aligned version of zt under the learned
diffusion prior. We have ẑ0:L now.
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We recursively reconstruct motion frames using the gen-
erator G: x̂t = x̂t−1 + G(zt, x̂t−1). This generates the
sequence x̂0:L based entirely on the latent motions.

Optimization Objective Now review what we have: x0:L

the observation motions, z0:L latent motions, ẑ0:L latent
motions that follow prior, and x̂0:L the real motions rolled
out from latent motions. We now use the latent motions z0:L
as optimization parameters, try to minimize the following
energy:

min
z0:L,β,g

ESDS + Eobs + Ereg

• Score Distillation Loss: Encourages latent motions to
stay close to diffusion-prior estimates.

ESDS =

L∑
t=0

∥zt − ẑ0t ∥22

• Observation Loss: Encourages the decoded motions to
look like observations.

Eobs =

L∑
t=0

J∑
j=1

λdata∥p̂jt − yjt ∥2

Where p̂jt is the j-th joint position inferred from x̂t.
• Regularization Loss: We adopt four regularizers inspired

by prior work (e.g., HuMoR [31]): First, the skeleton con-
sistency term ensures that joint positions decoded from
latent codes match those inferred by SMPL, while pre-
serving stable bone lengths over time:

Eskel =

L∑
t=1

λc

∑
j

∥pjt − p̂jt∥2 + λb

∑
i

(lit − lit−1)
2

 .

To prevent foot sliding and ensure plausible contact with
the ground, we include a ground contact consistency term
that penalizes both velocity at contact points and floating
artifacts:

Eenv =

L∑
t=1

∑
j

λcvc
j
t∥p

j
t−pjt−1∥2+λchc

j
t ·max(|pjz,t|−δ, 0).

We also constrain body shape and global translation
through a shape regularizer and a ground constraint:

Eshape = λshape∥β∥2, Egnd = λgnd∥g − ginit∥2,

Which respectively prevent unnatural shape deformation
and enforce consistency in global body position. Lastly, a
smoothness term enforces temporal continuity by penal-
izing abrupt changes in joint positions:

Esmooth =

L∑
t=1

∑
j

∥pjt − pjt−1∥2.

Figure 3. Qualitative result of DREAMoR(right) compared with
groundtruth(left). DREAMoR captures active body movements
while maintaining steady posture on easy motion under occluded
conditions.

The total regularization loss is the weighted sum of the
above terms:

Ereg = Eskel + Eenv + Eshape + Egnd + Esmooth.

Finally, we use optimized z∗0:L to roll out a real motion
sequence, all the occluded motions are recovered and match
the observed data while ensuring physical plausibility.

4. Experiments
We evaluate DREAMoR on its capability as a prior to es-
timate and refine motion from partial 3D observations. We
recommend watching the qualitative evaluation videos on
our website to compare the performance of our method to
others.

4.1. Dataset
Our experiments utilize the AMASS dataset[23], a large-
scale collection of motion capture (MoCap) data standard-
ized on the SMPL body model. The dataset comprises di-
verse motions, ranging from daily activities to dynamic and
expressive movements such as dancing, sports, and com-
plex interactions. We ran our experiments on part of the
AMASS dataset (ACCAD, CMU, DanceDB, EyesJapan-
Dataset, MPI mosh, and SOMA) with a total of 3282 mo-
tion sequences and a total length of 1205.45 minutes. We
subsample the dataset at 30 Hz for our experiments, con-

5



Method Input Positional Error Joints Mesh Ground Pen
Vis Occ All Legs Vtx Contact Accel Freq Dist

VPoser-t Occ Keypoints 0.72 28.67 13.36 26.10 11.86 / 2.89 22.54% 14.29
HuMoR Occ Keypoints 1.56 24.03 11.94 19.09 11.42 0.88 2.72 11.26% 1.63
RoHM Occ Keypoints 1.23 9.70 5.91 12.92 7.07 0.96 2.00 5.73% 0.62
Ours(DREAMoR) Occ Keypoints 1.68 8.19 4.11 9.98 4.39 0.95 2.59 6.25% 0.58

Table 1. Motion and shape estimation from 3D observations: partially occluded keypoints. Positional Error (cm) is reported w.r.t. the input
modality. Acceleration is in m/s2 and penetration distance in cm.

sistent with standard practices in previous literature such as
HuMoR[31].

4.2. Evaluation Metrics

The metrics adopted follow standard conventions estab-
lished in prior work:

Error Metrics. 3DPositional errors are measured on
joints, keypoints, or mesh vertices (Vtx) and compute
global mean per-point position error unless otherwise spec-
ified. We report positional errors for all (All), occluded
(Occ), and visible (Vis) observations separately. Finally,
we report the binary classification accuracy of the 9 person-
ground contacts (Contact) predicted by methods.

Plausibility Metrics. We use additional metrics to mea-
sure qualitative motion characteristics that joint errors can-
not capture. Smoothness is evaluated by mean per-joint ac-
celerations (Accel) [13]. Another important indicator of
plausibility is ground penetration [29]. We use the true
ground plane to compute the frequency (Freq) of foot-floor
penetrations: the fraction of frames for both the left and
right toe joints that penetrate more than a threshold. We
measure frequency at 0, 3, 6, 9, 12, and 15 cm thresholds
and report the mean. We also report mean penetration dis-
tance (Dist), where non-penetrating frames contribute a dis-
tance of 0 to make values comparable across differing fre-
quencies.

4.3. Estimation and Refinement from 3D Observa-
tions

We conduct experiments by masking the lower-body joints
of AMASS data[23], thereby removing all positional infor-
mation for the lower body. Under this challenging setting,
DREAMoR must regenerate the lower-body motion solely
conditioned on the upper-body motion. Experimental re-
sults indicate DREAMoR demonstrates significant capabil-
ities:
• When the upper body performs complex actions such as

dancing, the regenerated lower-body movements exhibit
realistic and expressive patterns rather than remaining
static. This demonstrates that DREAMoR successfully

Figure 4. Ablation study of denoising steps. Groundtruth(Left),
denoise 1 step(Middle), and denoise 10 steps(Right) are demon-
strated at the same time stamp.

learns latent correlations between upper and lower-body
motions from the diffusion-based generative prior.

• Conversely, when upper-body actions are relatively sim-
ple (e.g., waving), the lower-body motions generated by
DREAMoR appropriately remain stable and minimally
active, closely mirroring realistic human behavior.

These findings highlight DREAMoR’s capacity to robustly
estimate plausible lower-body motions through its genera-
tive diffusion process, maintaining both dynamism and con-
sistency with observed upper-body motion.

4.4. Ablation study
We conduct two ablation experiments to validate key com-
ponents of DREAMoR’s framework.

4.4.1. Denoising steps
From Method part 3.4, we apply denoising using the pre-
dicted noise ϵ̂tk , where we did for each step k = K, . . . , 1.
We conducted ablation experiments on the denoising steps
and tested the final results for denoising 1 step compared
with denoising 10 steps. The results are shown in Figure
4. While both use the same underlying model, Denoising
10 steps consistently produces more accurate and smoother
motions. In particular, lower-body generations benefit from
iterative denoising, yielding more plausible dynamics un-
der partial observations. From the figure 4, on the same
time stamp, the result from denoising 1 step shows that jit-
teriness has occurred because the left leg jittered to overlap
with the right leg, whereas the denoising 10 steps result fol-
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Figure 5. Ablation study of motion optimization. Ground truth
(Top-left), denoise 10 steps w/ opt.(Top-right), denoise 10 steps
w/o opt.(Bottom-left), and MotionVAE w/o opt.(Bottom-right) are
demonstrated at the same time stamp.

lows the ground truth and no overlapping occurred.

Denoising step Occ Positional Error Legs Joints

1 9.38 11.44
10 8.19↓ 9.98↓

Table 2. Ablation on denoising steps. Denoising 10 steps shows
better performance on related metrics.

4.4.2. Motion optimization from motion prior

We also evaluate the impact of our third-stage optimization
by removing it entirely. Instead of performing the optimiza-
tion, we directly encode the observed motion sequence x0:L

to obtain the latent motion sequence z0:L. We considered
two variants: The first one is to directly roll out the mo-
tion using the latent sequence as predicted by MotionVAE,
another one is to apply noise to the z0:L, followed by de-
noising steps to obtain a prior-conforming latent sequence
ẑ0:L and then rolled out. The results of ground truth, w/
optimization, w/o optimization variants 1 and 2 are shown
in Figure 5. Without this refinement, motion quality de-
grades significantly, often failing to match observed upper-
body motions or resulting in implausible lower-body arti-
facts. From Figure 5, there’s a significant pose error without
optimization, and the result is pretty much unusable.

Method Vis Positional Error Vtx Mesh

w/ opt. 1.68↓ 4.11↓
w/o opt. diff. 16.96 18.73
w/o opt. vae. 17.56 19.19

Table 3. Ablation on optimization step. Utilizing our optimization
step yields a significant performance increase on related metrics.

5. Conclusion and Future Work
In this work, we introduced DREAMoR, a diffusion-based
framework for reconstructing realistic and physically plau-
sible human motion from occluded input sequences. Our
approach combines a MotionVAE encoder–decoder with a
latent-space diffusion prior, trained to model plausible mo-
tion transitions. At inference time, we apply multi-step
DDIM-based denoising and score distillation to iteratively
refine corrupted motion into clean reconstructions. Through
experiments on AMASS with simulated occlusion, we show
that DREAMoR achieves improvements over existing mo-
tion priors.

While DREAMoR demonstrates promising perfor-
mance, several avenues remain open for further research.
First, our current model conditions on the previous frame
during both decoding and denoising. A promising direc-
tion is to explore unconditional decoding from latent vari-
ables alone, potentially improving generalization. Second,
we currently condition only on a single previous frame; in-
corporating longer temporal context (e.g., xt−2, xt−3, . . . )
could enable the model to capture more complex motion
dynamics. Third, our occlusion and noise settings are
synthetic. Integrating real-world observations, such as
RGB video, depth, or sparse 2D keypoints, would bring
DREAMoR closer to practical deployment. We also plan to
evaluate the system on custom-captured test sequences with
real occlusions and motion ambiguity to validate robustness
in the wild.
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